1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
// This is the backtracking matching engine. It has the same exact capability
// as the full NFA simulation, except it is artificially restricted to small
// regexes on small inputs because of its memory requirements.
//
// In particular, this is a *bounded* backtracking engine. It retains worst
// case linear time by keeping track of the states that it has visited (using a
// bitmap). Namely, once a state is visited, it is never visited again. Since a
// state is keyed by `(instruction index, input index)`, we have that its time
// complexity is `O(mn)` (i.e., linear in the size of the search text).
//
// The backtracking engine can beat out the NFA simulation on small
// regexes/inputs because it doesn't have to keep track of multiple copies of
// the capture groups. In benchmarks, the backtracking engine is roughly twice
// as fast as the full NFA simulation. Note though that its performance doesn't
// scale, even if you're willing to live with the memory requirements. Namely,
// the bitset has to be zeroed on each execution, which becomes quite expensive
// on large bitsets.
use crate::exec::ProgramCache;
use crate::input::{Input, InputAt};
use crate::prog::{InstPtr, Program};
use crate::re_trait::Slot;
type Bits = u32;
const BIT_SIZE: usize = 32;
const MAX_SIZE_BYTES: usize = 256 * (1 << 10); // 256 KB
/// Returns true iff the given regex and input should be executed by this
/// engine with reasonable memory usage.
pub fn should_exec(num_insts: usize, text_len: usize) -> bool {
// Total memory usage in bytes is determined by:
//
// ((len(insts) * (len(input) + 1) + bits - 1) / bits) * (size_of(u32))
//
// The actual limit picked is pretty much a heuristic.
// See: https://github.com/rust-lang/regex/issues/215
let size = ((num_insts * (text_len + 1) + BIT_SIZE - 1) / BIT_SIZE) * 4;
size <= MAX_SIZE_BYTES
}
/// A backtracking matching engine.
#[derive(Debug)]
pub struct Bounded<'a, 'm, 'r, 's, I> {
prog: &'r Program,
input: I,
matches: &'m mut [bool],
slots: &'s mut [Slot],
m: &'a mut Cache,
}
/// Shared cached state between multiple invocations of a backtracking engine
/// in the same thread.
#[derive(Clone, Debug)]
pub struct Cache {
jobs: Vec<Job>,
visited: Vec<Bits>,
}
impl Cache {
/// Create new empty cache for the backtracking engine.
pub fn new(_prog: &Program) -> Self {
Cache { jobs: vec![], visited: vec![] }
}
}
/// A job is an explicit unit of stack space in the backtracking engine.
///
/// The "normal" representation is a single state transition, which corresponds
/// to an NFA state and a character in the input. However, the backtracking
/// engine must keep track of old capture group values. We use the explicit
/// stack to do it.
#[derive(Clone, Copy, Debug)]
enum Job {
Inst { ip: InstPtr, at: InputAt },
SaveRestore { slot: usize, old_pos: Option<usize> },
}
impl<'a, 'm, 'r, 's, I: Input> Bounded<'a, 'm, 'r, 's, I> {
/// Execute the backtracking matching engine.
///
/// If there's a match, `exec` returns `true` and populates the given
/// captures accordingly.
pub fn exec(
prog: &'r Program,
cache: &ProgramCache,
matches: &'m mut [bool],
slots: &'s mut [Slot],
input: I,
start: usize,
end: usize,
) -> bool {
let mut cache = cache.borrow_mut();
let cache = &mut cache.backtrack;
let start = input.at(start);
let mut b = Bounded {
prog: prog,
input: input,
matches: matches,
slots: slots,
m: cache,
};
b.exec_(start, end)
}
/// Clears the cache such that the backtracking engine can be executed
/// on some input of fixed length.
fn clear(&mut self) {
// Reset the job memory so that we start fresh.
self.m.jobs.clear();
// Now we need to clear the bit state set.
// We do this by figuring out how much space we need to keep track
// of the states we've visited.
// Then we reset all existing allocated space to 0.
// Finally, we request more space if we need it.
//
// This is all a little circuitous, but doing this using unchecked
// operations doesn't seem to have a measurable impact on performance.
// (Probably because backtracking is limited to such small
// inputs/regexes in the first place.)
let visited_len =
(self.prog.len() * (self.input.len() + 1) + BIT_SIZE - 1)
/ BIT_SIZE;
self.m.visited.truncate(visited_len);
for v in &mut self.m.visited {
*v = 0;
}
if visited_len > self.m.visited.len() {
let len = self.m.visited.len();
self.m.visited.reserve_exact(visited_len - len);
for _ in 0..(visited_len - len) {
self.m.visited.push(0);
}
}
}
/// Start backtracking at the given position in the input, but also look
/// for literal prefixes.
fn exec_(&mut self, mut at: InputAt, end: usize) -> bool {
self.clear();
// If this is an anchored regex at the beginning of the input, then
// we're either already done or we only need to try backtracking once.
if self.prog.is_anchored_start {
return if !at.is_start() { false } else { self.backtrack(at) };
}
let mut matched = false;
loop {
if !self.prog.prefixes.is_empty() {
at = match self.input.prefix_at(&self.prog.prefixes, at) {
None => break,
Some(at) => at,
};
}
matched = self.backtrack(at) || matched;
if matched && self.prog.matches.len() == 1 {
return true;
}
if at.pos() >= end {
break;
}
at = self.input.at(at.next_pos());
}
matched
}
/// The main backtracking loop starting at the given input position.
fn backtrack(&mut self, start: InputAt) -> bool {
// N.B. We use an explicit stack to avoid recursion.
// To avoid excessive pushing and popping, most transitions are handled
// in the `step` helper function, which only pushes to the stack when
// there's a capture or a branch.
let mut matched = false;
self.m.jobs.push(Job::Inst { ip: 0, at: start });
while let Some(job) = self.m.jobs.pop() {
match job {
Job::Inst { ip, at } => {
if self.step(ip, at) {
// Only quit if we're matching one regex.
// If we're matching a regex set, then mush on and
// try to find other matches (if we want them).
if self.prog.matches.len() == 1 {
return true;
}
matched = true;
}
}
Job::SaveRestore { slot, old_pos } => {
if slot < self.slots.len() {
self.slots[slot] = old_pos;
}
}
}
}
matched
}
fn step(&mut self, mut ip: InstPtr, mut at: InputAt) -> bool {
use crate::prog::Inst::*;
loop {
// This loop is an optimization to avoid constantly pushing/popping
// from the stack. Namely, if we're pushing a job only to run it
// next, avoid the push and just mutate `ip` (and possibly `at`)
// in place.
if self.has_visited(ip, at) {
return false;
}
match self.prog[ip] {
Match(slot) => {
if slot < self.matches.len() {
self.matches[slot] = true;
}
return true;
}
Save(ref inst) => {
if let Some(&old_pos) = self.slots.get(inst.slot) {
// If this path doesn't work out, then we save the old
// capture index (if one exists) in an alternate
// job. If the next path fails, then the alternate
// job is popped and the old capture index is restored.
self.m.jobs.push(Job::SaveRestore {
slot: inst.slot,
old_pos: old_pos,
});
self.slots[inst.slot] = Some(at.pos());
}
ip = inst.goto;
}
Split(ref inst) => {
self.m.jobs.push(Job::Inst { ip: inst.goto2, at: at });
ip = inst.goto1;
}
EmptyLook(ref inst) => {
if self.input.is_empty_match(at, inst) {
ip = inst.goto;
} else {
return false;
}
}
Char(ref inst) => {
if inst.c == at.char() {
ip = inst.goto;
at = self.input.at(at.next_pos());
} else {
return false;
}
}
Ranges(ref inst) => {
if inst.matches(at.char()) {
ip = inst.goto;
at = self.input.at(at.next_pos());
} else {
return false;
}
}
Bytes(ref inst) => {
if let Some(b) = at.byte() {
if inst.matches(b) {
ip = inst.goto;
at = self.input.at(at.next_pos());
continue;
}
}
return false;
}
}
}
}
fn has_visited(&mut self, ip: InstPtr, at: InputAt) -> bool {
let k = ip * (self.input.len() + 1) + at.pos();
let k1 = k / BIT_SIZE;
let k2 = usize_to_u32(1 << (k & (BIT_SIZE - 1)));
if self.m.visited[k1] & k2 == 0 {
self.m.visited[k1] |= k2;
false
} else {
true
}
}
}
fn usize_to_u32(n: usize) -> u32 {
if (n as u64) > (::std::u32::MAX as u64) {
panic!("BUG: {} is too big to fit into u32", n)
}
n as u32
}