logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
//! This module contains an implementation of alias method for sampling random
//! indices with probabilities proportional to a collection of weights.

use super::WeightedError;
#[cfg(not(feature = "std"))] use crate::alloc::vec;
#[cfg(not(feature = "std"))] use crate::alloc::vec::Vec;
use crate::distributions::uniform::SampleUniform;
use crate::distributions::Distribution;
use crate::distributions::Uniform;
use crate::Rng;
use core::fmt;
use core::iter::Sum;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign};

/// A distribution using weighted sampling to pick a discretely selected item.
///
/// Sampling a [`WeightedIndex<W>`] distribution returns the index of a randomly
/// selected element from the vector used to create the [`WeightedIndex<W>`].
/// The chance of a given element being picked is proportional to the value of
/// the element. The weights can have any type `W` for which a implementation of
/// [`Weight`] exists.
///
/// # Performance
///
/// Given that `n` is the number of items in the vector used to create an
/// [`WeightedIndex<W>`], [`WeightedIndex<W>`] will require `O(n)` amount of
/// memory. More specifically it takes up some constant amount of memory plus
/// the vector used to create it and a [`Vec<u32>`] with capacity `n`.
///
/// Time complexity for the creation of a [`WeightedIndex<W>`] is `O(n)`.
/// Sampling is `O(1)`, it makes a call to [`Uniform<u32>::sample`] and a call
/// to [`Uniform<W>::sample`].
///
/// # Example
///
/// ```
/// use rand::distributions::weighted::alias_method::WeightedIndex;
/// use rand::prelude::*;
///
/// let choices = vec!['a', 'b', 'c'];
/// let weights = vec![2, 1, 1];
/// let dist = WeightedIndex::new(weights).unwrap();
/// let mut rng = thread_rng();
/// for _ in 0..100 {
///     // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
///     println!("{}", choices[dist.sample(&mut rng)]);
/// }
///
/// let items = [('a', 0), ('b', 3), ('c', 7)];
/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1).collect()).unwrap();
/// for _ in 0..100 {
///     // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
///     println!("{}", items[dist2.sample(&mut rng)].0);
/// }
/// ```
///
/// [`WeightedIndex<W>`]: crate::distributions::weighted::alias_method::WeightedIndex
/// [`Weight`]: crate::distributions::weighted::alias_method::Weight
/// [`Vec<u32>`]: Vec
/// [`Uniform<u32>::sample`]: Distribution::sample
/// [`Uniform<W>::sample`]: Distribution::sample
pub struct WeightedIndex<W: Weight> {
    aliases: Vec<u32>,
    no_alias_odds: Vec<W>,
    uniform_index: Uniform<u32>,
    uniform_within_weight_sum: Uniform<W>,
}

impl<W: Weight> WeightedIndex<W> {
    /// Creates a new [`WeightedIndex`].
    ///
    /// Returns an error if:
    /// - The vector is empty.
    /// - The vector is longer than `u32::MAX`.
    /// - For any weight `w`: `w < 0` or `w > max` where `max = W::MAX /
    ///   weights.len()`.
    /// - The sum of weights is zero.
    pub fn new(weights: Vec<W>) -> Result<Self, WeightedError> {
        let n = weights.len();
        if n == 0 {
            return Err(WeightedError::NoItem);
        } else if n > ::core::u32::MAX as usize {
            return Err(WeightedError::TooMany);
        }
        let n = n as u32;

        let max_weight_size = W::try_from_u32_lossy(n)
            .map(|n| W::MAX / n)
            .unwrap_or(W::ZERO);
        if !weights
            .iter()
            .all(|&w| W::ZERO <= w && w <= max_weight_size)
        {
            return Err(WeightedError::InvalidWeight);
        }

        // The sum of weights will represent 100% of no alias odds.
        let weight_sum = Weight::sum(weights.as_slice());
        // Prevent floating point overflow due to rounding errors.
        let weight_sum = if weight_sum > W::MAX {
            W::MAX
        } else {
            weight_sum
        };
        if weight_sum == W::ZERO {
            return Err(WeightedError::AllWeightsZero);
        }

        // `weight_sum` would have been zero if `try_from_lossy` causes an error here.
        let n_converted = W::try_from_u32_lossy(n).unwrap();

        let mut no_alias_odds = weights;
        for odds in no_alias_odds.iter_mut() {
            *odds *= n_converted;
            // Prevent floating point overflow due to rounding errors.
            *odds = if *odds > W::MAX { W::MAX } else { *odds };
        }

        /// This struct is designed to contain three data structures at once,
        /// sharing the same memory. More precisely it contains two linked lists
        /// and an alias map, which will be the output of this method. To keep
        /// the three data structures from getting in each other's way, it must
        /// be ensured that a single index is only ever in one of them at the
        /// same time.
        struct Aliases {
            aliases: Vec<u32>,
            smalls_head: u32,
            bigs_head: u32,
        }

        impl Aliases {
            fn new(size: u32) -> Self {
                Aliases {
                    aliases: vec![0; size as usize],
                    smalls_head: ::core::u32::MAX,
                    bigs_head: ::core::u32::MAX,
                }
            }

            fn push_small(&mut self, idx: u32) {
                self.aliases[idx as usize] = self.smalls_head;
                self.smalls_head = idx;
            }

            fn push_big(&mut self, idx: u32) {
                self.aliases[idx as usize] = self.bigs_head;
                self.bigs_head = idx;
            }

            fn pop_small(&mut self) -> u32 {
                let popped = self.smalls_head;
                self.smalls_head = self.aliases[popped as usize];
                popped
            }

            fn pop_big(&mut self) -> u32 {
                let popped = self.bigs_head;
                self.bigs_head = self.aliases[popped as usize];
                popped
            }

            fn smalls_is_empty(&self) -> bool {
                self.smalls_head == ::core::u32::MAX
            }

            fn bigs_is_empty(&self) -> bool {
                self.bigs_head == ::core::u32::MAX
            }

            fn set_alias(&mut self, idx: u32, alias: u32) {
                self.aliases[idx as usize] = alias;
            }
        }

        let mut aliases = Aliases::new(n);

        // Split indices into those with small weights and those with big weights.
        for (index, &odds) in no_alias_odds.iter().enumerate() {
            if odds < weight_sum {
                aliases.push_small(index as u32);
            } else {
                aliases.push_big(index as u32);
            }
        }

        // Build the alias map by finding an alias with big weight for each index with
        // small weight.
        while !aliases.smalls_is_empty() && !aliases.bigs_is_empty() {
            let s = aliases.pop_small();
            let b = aliases.pop_big();

            aliases.set_alias(s, b);
            no_alias_odds[b as usize] =
                no_alias_odds[b as usize] - weight_sum + no_alias_odds[s as usize];

            if no_alias_odds[b as usize] < weight_sum {
                aliases.push_small(b);
            } else {
                aliases.push_big(b);
            }
        }

        // The remaining indices should have no alias odds of about 100%. This is due to
        // numeric accuracy. Otherwise they would be exactly 100%.
        while !aliases.smalls_is_empty() {
            no_alias_odds[aliases.pop_small() as usize] = weight_sum;
        }
        while !aliases.bigs_is_empty() {
            no_alias_odds[aliases.pop_big() as usize] = weight_sum;
        }

        // Prepare distributions for sampling. Creating them beforehand improves
        // sampling performance.
        let uniform_index = Uniform::new(0, n);
        let uniform_within_weight_sum = Uniform::new(W::ZERO, weight_sum);

        Ok(Self {
            aliases: aliases.aliases,
            no_alias_odds,
            uniform_index,
            uniform_within_weight_sum,
        })
    }
}

impl<W: Weight> Distribution<usize> for WeightedIndex<W> {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        let candidate = rng.sample(self.uniform_index);
        if rng.sample(&self.uniform_within_weight_sum) < self.no_alias_odds[candidate as usize] {
            candidate as usize
        } else {
            self.aliases[candidate as usize] as usize
        }
    }
}

impl<W: Weight> fmt::Debug for WeightedIndex<W>
where
    W: fmt::Debug,
    Uniform<W>: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("WeightedIndex")
            .field("aliases", &self.aliases)
            .field("no_alias_odds", &self.no_alias_odds)
            .field("uniform_index", &self.uniform_index)
            .field("uniform_within_weight_sum", &self.uniform_within_weight_sum)
            .finish()
    }
}

impl<W: Weight> Clone for WeightedIndex<W>
where Uniform<W>: Clone
{
    fn clone(&self) -> Self {
        Self {
            aliases: self.aliases.clone(),
            no_alias_odds: self.no_alias_odds.clone(),
            uniform_index: self.uniform_index.clone(),
            uniform_within_weight_sum: self.uniform_within_weight_sum.clone(),
        }
    }
}

/// Trait that must be implemented for weights, that are used with
/// [`WeightedIndex`]. Currently no guarantees on the correctness of
/// [`WeightedIndex`] are given for custom implementations of this trait.
pub trait Weight:
    Sized
    + Copy
    + SampleUniform
    + PartialOrd
    + Add<Output = Self>
    + AddAssign
    + Sub<Output = Self>
    + SubAssign
    + Mul<Output = Self>
    + MulAssign
    + Div<Output = Self>
    + DivAssign
    + Sum
{
    /// Maximum number representable by `Self`.
    const MAX: Self;

    /// Element of `Self` equivalent to 0.
    const ZERO: Self;

    /// Produce an instance of `Self` from a `u32` value, or return `None` if
    /// out of range. Loss of precision (where `Self` is a floating point type)
    /// is acceptable.
    fn try_from_u32_lossy(n: u32) -> Option<Self>;

    /// Sums all values in slice `values`.
    fn sum(values: &[Self]) -> Self {
        values.iter().map(|x| *x).sum()
    }
}

macro_rules! impl_weight_for_float {
    ($T: ident) => {
        impl Weight for $T {
            const MAX: Self = ::core::$T::MAX;
            const ZERO: Self = 0.0;

            fn try_from_u32_lossy(n: u32) -> Option<Self> {
                Some(n as $T)
            }

            fn sum(values: &[Self]) -> Self {
                pairwise_sum(values)
            }
        }
    };
}

/// In comparison to naive accumulation, the pairwise sum algorithm reduces
/// rounding errors when there are many floating point values.
fn pairwise_sum<T: Weight>(values: &[T]) -> T {
    if values.len() <= 32 {
        values.iter().map(|x| *x).sum()
    } else {
        let mid = values.len() / 2;
        let (a, b) = values.split_at(mid);
        pairwise_sum(a) + pairwise_sum(b)
    }
}

macro_rules! impl_weight_for_int {
    ($T: ident) => {
        impl Weight for $T {
            const MAX: Self = ::core::$T::MAX;
            const ZERO: Self = 0;

            fn try_from_u32_lossy(n: u32) -> Option<Self> {
                let n_converted = n as Self;
                if n_converted >= Self::ZERO && n_converted as u32 == n {
                    Some(n_converted)
                } else {
                    None
                }
            }
        }
    };
}

impl_weight_for_float!(f64);
impl_weight_for_float!(f32);
impl_weight_for_int!(usize);
#[cfg(not(target_os = "emscripten"))]
impl_weight_for_int!(u128);
impl_weight_for_int!(u64);
impl_weight_for_int!(u32);
impl_weight_for_int!(u16);
impl_weight_for_int!(u8);
impl_weight_for_int!(isize);
#[cfg(not(target_os = "emscripten"))]
impl_weight_for_int!(i128);
impl_weight_for_int!(i64);
impl_weight_for_int!(i32);
impl_weight_for_int!(i16);
impl_weight_for_int!(i8);

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_f32() {
        test_weighted_index(f32::into);

        // Floating point special cases
        assert_eq!(
            WeightedIndex::new(vec![::core::f32::INFINITY]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![-0_f32]).unwrap_err(),
            WeightedError::AllWeightsZero
        );
        assert_eq!(
            WeightedIndex::new(vec![-1_f32]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![-::core::f32::INFINITY]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![::core::f32::NAN]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    #[cfg(not(target_os = "emscripten"))]
    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_u128() {
        test_weighted_index(|x: u128| x as f64);
    }

    #[cfg(all(rustc_1_26, not(target_os = "emscripten")))]
    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_i128() {
        test_weighted_index(|x: i128| x as f64);

        // Signed integer special cases
        assert_eq!(
            WeightedIndex::new(vec![-1_i128]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![::core::i128::MIN]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_u8() {
        test_weighted_index(u8::into);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted_index_i8() {
        test_weighted_index(i8::into);

        // Signed integer special cases
        assert_eq!(
            WeightedIndex::new(vec![-1_i8]).unwrap_err(),
            WeightedError::InvalidWeight
        );
        assert_eq!(
            WeightedIndex::new(vec![::core::i8::MIN]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    fn test_weighted_index<W: Weight, F: Fn(W) -> f64>(w_to_f64: F)
    where WeightedIndex<W>: fmt::Debug {
        const NUM_WEIGHTS: u32 = 10;
        const ZERO_WEIGHT_INDEX: u32 = 3;
        const NUM_SAMPLES: u32 = 15000;
        let mut rng = crate::test::rng(0x9c9fa0b0580a7031);

        let weights = {
            let mut weights = Vec::with_capacity(NUM_WEIGHTS as usize);
            let random_weight_distribution = crate::distributions::Uniform::new_inclusive(
                W::ZERO,
                W::MAX / W::try_from_u32_lossy(NUM_WEIGHTS).unwrap(),
            );
            for _ in 0..NUM_WEIGHTS {
                weights.push(rng.sample(&random_weight_distribution));
            }
            weights[ZERO_WEIGHT_INDEX as usize] = W::ZERO;
            weights
        };
        let weight_sum = weights.iter().map(|w| *w).sum::<W>();
        let expected_counts = weights
            .iter()
            .map(|&w| w_to_f64(w) / w_to_f64(weight_sum) * NUM_SAMPLES as f64)
            .collect::<Vec<f64>>();
        let weight_distribution = WeightedIndex::new(weights).unwrap();

        let mut counts = vec![0; NUM_WEIGHTS as usize];
        for _ in 0..NUM_SAMPLES {
            counts[rng.sample(&weight_distribution)] += 1;
        }

        assert_eq!(counts[ZERO_WEIGHT_INDEX as usize], 0);
        for (count, expected_count) in counts.into_iter().zip(expected_counts) {
            let difference = (count as f64 - expected_count).abs();
            let max_allowed_difference = NUM_SAMPLES as f64 / NUM_WEIGHTS as f64 * 0.1;
            assert!(difference <= max_allowed_difference);
        }

        assert_eq!(
            WeightedIndex::<W>::new(vec![]).unwrap_err(),
            WeightedError::NoItem
        );
        assert_eq!(
            WeightedIndex::new(vec![W::ZERO]).unwrap_err(),
            WeightedError::AllWeightsZero
        );
        assert_eq!(
            WeightedIndex::new(vec![W::MAX, W::MAX]).unwrap_err(),
            WeightedError::InvalidWeight
        );
    }

    #[test]
    fn value_stability() {
        fn test_samples<W: Weight>(weights: Vec<W>, buf: &mut [usize], expected: &[usize]) {
            assert_eq!(buf.len(), expected.len());
            let distr = WeightedIndex::new(weights).unwrap();
            let mut rng = crate::test::rng(0x9c9fa0b0580a7031);
            for r in buf.iter_mut() {
                *r = rng.sample(&distr);
            }
            assert_eq!(buf, expected);
        }

        let mut buf = [0; 10];
        test_samples(vec![1i32, 1, 1, 1, 1, 1, 1, 1, 1], &mut buf, &[
            6, 5, 7, 5, 8, 7, 6, 2, 3, 7,
        ]);
        test_samples(vec![0.7f32, 0.1, 0.1, 0.1], &mut buf, &[
            2, 0, 0, 0, 0, 0, 0, 0, 1, 3,
        ]);
        test_samples(vec![1.0f64, 0.999, 0.998, 0.997], &mut buf, &[
            2, 1, 2, 3, 2, 1, 3, 2, 1, 1,
        ]);
    }
}