logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Sequence-related functionality
//!
//! This module provides:
//!
//! *   [`SliceRandom`] slice sampling and mutation
//! *   [`IteratorRandom`] iterator sampling
//! *   [`index::sample`] low-level API to choose multiple indices from
//!     `0..length`
//!
//! Also see:
//!
//! *   [`crate::distributions::weighted`] module which provides
//!     implementations of weighted index sampling.
//!
//! In order to make results reproducible across 32-64 bit architectures, all
//! `usize` indices are sampled as a `u32` where possible (also providing a
//! small performance boost in some cases).


#[cfg(feature = "alloc")] pub mod index;

#[cfg(feature = "alloc")] use core::ops::Index;

#[cfg(all(feature = "alloc", not(feature = "std")))] use crate::alloc::vec::Vec;

#[cfg(feature = "alloc")]
use crate::distributions::uniform::{SampleBorrow, SampleUniform};
#[cfg(feature = "alloc")] use crate::distributions::WeightedError;
use crate::Rng;

/// Extension trait on slices, providing random mutation and sampling methods.
///
/// This trait is implemented on all `[T]` slice types, providing several
/// methods for choosing and shuffling elements. You must `use` this trait:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// fn main() {
///     let mut rng = rand::thread_rng();
///     let mut bytes = "Hello, random!".to_string().into_bytes();
///     bytes.shuffle(&mut rng);
///     let str = String::from_utf8(bytes).unwrap();
///     println!("{}", str);
/// }
/// ```
/// Example output (non-deterministic):
/// ```none
/// l,nmroHado !le
/// ```
pub trait SliceRandom {
    /// The element type.
    type Item;

    /// Returns a reference to one random element of the slice, or `None` if the
    /// slice is empty.
    ///
    /// For slices, complexity is `O(1)`.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::thread_rng;
    /// use rand::seq::SliceRandom;
    ///
    /// let choices = [1, 2, 4, 8, 16, 32];
    /// let mut rng = thread_rng();
    /// println!("{:?}", choices.choose(&mut rng));
    /// assert_eq!(choices[..0].choose(&mut rng), None);
    /// ```
    fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
    where R: Rng + ?Sized;

    /// Returns a mutable reference to one random element of the slice, or
    /// `None` if the slice is empty.
    ///
    /// For slices, complexity is `O(1)`.
    fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
    where R: Rng + ?Sized;

    /// Chooses `amount` elements from the slice at random, without repetition,
    /// and in random order. The returned iterator is appropriate both for
    /// collection into a `Vec` and filling an existing buffer (see example).
    ///
    /// In case this API is not sufficiently flexible, use [`index::sample`].
    ///
    /// For slices, complexity is the same as [`index::sample`].
    ///
    /// # Example
    /// ```
    /// use rand::seq::SliceRandom;
    ///
    /// let mut rng = &mut rand::thread_rng();
    /// let sample = "Hello, audience!".as_bytes();
    ///
    /// // collect the results into a vector:
    /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
    ///
    /// // store in a buffer:
    /// let mut buf = [0u8; 5];
    /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
    ///     *slot = *b;
    /// }
    /// ```
    #[cfg(feature = "alloc")]
    fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
    where R: Rng + ?Sized;

    /// Similar to [`choose`], but where the likelihood of each outcome may be
    /// specified.
    ///
    /// The specified function `weight` maps each item `x` to a relative
    /// likelihood `weight(x)`. The probability of each item being selected is
    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
    ///
    /// For slices of length `n`, complexity is `O(n)`.
    /// See also [`choose_weighted_mut`], [`distributions::weighted`].
    ///
    /// # Example
    ///
    /// ```
    /// use rand::prelude::*;
    ///
    /// let choices = [('a', 2), ('b', 1), ('c', 1)];
    /// let mut rng = thread_rng();
    /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
    /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
    /// ```
    /// [`choose`]: SliceRandom::choose
    /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
    /// [`distributions::weighted`]: crate::distributions::weighted
    #[cfg(feature = "alloc")]
    fn choose_weighted<R, F, B, X>(
        &self, rng: &mut R, weight: F,
    ) -> Result<&Self::Item, WeightedError>
    where
        R: Rng + ?Sized,
        F: Fn(&Self::Item) -> B,
        B: SampleBorrow<X>,
        X: SampleUniform
            + for<'a> ::core::ops::AddAssign<&'a X>
            + ::core::cmp::PartialOrd<X>
            + Clone
            + Default;

    /// Similar to [`choose_mut`], but where the likelihood of each outcome may
    /// be specified.
    ///
    /// The specified function `weight` maps each item `x` to a relative
    /// likelihood `weight(x)`. The probability of each item being selected is
    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
    ///
    /// For slices of length `n`, complexity is `O(n)`.
    /// See also [`choose_weighted`], [`distributions::weighted`].
    ///
    /// [`choose_mut`]: SliceRandom::choose_mut
    /// [`choose_weighted`]: SliceRandom::choose_weighted
    /// [`distributions::weighted`]: crate::distributions::weighted
    #[cfg(feature = "alloc")]
    fn choose_weighted_mut<R, F, B, X>(
        &mut self, rng: &mut R, weight: F,
    ) -> Result<&mut Self::Item, WeightedError>
    where
        R: Rng + ?Sized,
        F: Fn(&Self::Item) -> B,
        B: SampleBorrow<X>,
        X: SampleUniform
            + for<'a> ::core::ops::AddAssign<&'a X>
            + ::core::cmp::PartialOrd<X>
            + Clone
            + Default;

    /// Shuffle a mutable slice in place.
    ///
    /// For slices of length `n`, complexity is `O(n)`.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::seq::SliceRandom;
    /// use rand::thread_rng;
    ///
    /// let mut rng = thread_rng();
    /// let mut y = [1, 2, 3, 4, 5];
    /// println!("Unshuffled: {:?}", y);
    /// y.shuffle(&mut rng);
    /// println!("Shuffled:   {:?}", y);
    /// ```
    fn shuffle<R>(&mut self, rng: &mut R)
    where R: Rng + ?Sized;

    /// Shuffle a slice in place, but exit early.
    ///
    /// Returns two mutable slices from the source slice. The first contains
    /// `amount` elements randomly permuted. The second has the remaining
    /// elements that are not fully shuffled.
    ///
    /// This is an efficient method to select `amount` elements at random from
    /// the slice, provided the slice may be mutated.
    ///
    /// If you only need to choose elements randomly and `amount > self.len()/2`
    /// then you may improve performance by taking
    /// `amount = values.len() - amount` and using only the second slice.
    ///
    /// If `amount` is greater than the number of elements in the slice, this
    /// will perform a full shuffle.
    ///
    /// For slices, complexity is `O(m)` where `m = amount`.
    fn partial_shuffle<R>(
        &mut self, rng: &mut R, amount: usize,
    ) -> (&mut [Self::Item], &mut [Self::Item])
    where R: Rng + ?Sized;
}

/// Extension trait on iterators, providing random sampling methods.
///
/// This trait is implemented on all sized iterators, providing methods for
/// choosing one or more elements. You must `use` this trait:
///
/// ```
/// use rand::seq::IteratorRandom;
///
/// fn main() {
///     let mut rng = rand::thread_rng();
///     
///     let faces = "😀😎😐😕😠😢";
///     println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
/// }
/// ```
/// Example output (non-deterministic):
/// ```none
/// I am 😀!
/// ```
pub trait IteratorRandom: Iterator + Sized {
    /// Choose one element at random from the iterator.
    ///
    /// Returns `None` if and only if the iterator is empty.
    ///
    /// This method uses [`Iterator::size_hint`] for optimisation. With an
    /// accurate hint and where [`Iterator::nth`] is a constant-time operation
    /// this method can offer `O(1)` performance. Where no size hint is
    /// available, complexity is `O(n)` where `n` is the iterator length.
    /// Partial hints (where `lower > 0`) also improve performance.
    ///
    /// For slices, prefer [`SliceRandom::choose`] which guarantees `O(1)`
    /// performance.
    fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
    where R: Rng + ?Sized {
        let (mut lower, mut upper) = self.size_hint();
        let mut consumed = 0;
        let mut result = None;

        if upper == Some(lower) {
            return if lower == 0 {
                None
            } else {
                self.nth(gen_index(rng, lower))
            };
        }

        // Continue until the iterator is exhausted
        loop {
            if lower > 1 {
                let ix = gen_index(rng, lower + consumed);
                let skip = if ix < lower {
                    result = self.nth(ix);
                    lower - (ix + 1)
                } else {
                    lower
                };
                if upper == Some(lower) {
                    return result;
                }
                consumed += lower;
                if skip > 0 {
                    self.nth(skip - 1);
                }
            } else {
                let elem = self.next();
                if elem.is_none() {
                    return result;
                }
                consumed += 1;
                let denom = consumed as f64; // accurate to 2^53 elements
                if rng.gen_bool(1.0 / denom) {
                    result = elem;
                }
            }

            let hint = self.size_hint();
            lower = hint.0;
            upper = hint.1;
        }
    }

    /// Collects values at random from the iterator into a supplied buffer
    /// until that buffer is filled.
    ///
    /// Although the elements are selected randomly, the order of elements in
    /// the buffer is neither stable nor fully random. If random ordering is
    /// desired, shuffle the result.
    ///
    /// Returns the number of elements added to the buffer. This equals the length
    /// of the buffer unless the iterator contains insufficient elements, in which
    /// case this equals the number of elements available.
    ///
    /// Complexity is `O(n)` where `n` is the length of the iterator.
    /// For slices, prefer [`SliceRandom::choose_multiple`].
    fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
    where R: Rng + ?Sized {
        let amount = buf.len();
        let mut len = 0;
        while len < amount {
            if let Some(elem) = self.next() {
                buf[len] = elem;
                len += 1;
            } else {
                // Iterator exhausted; stop early
                return len;
            }
        }

        // Continue, since the iterator was not exhausted
        for (i, elem) in self.enumerate() {
            let k = gen_index(rng, i + 1 + amount);
            if let Some(slot) = buf.get_mut(k) {
                *slot = elem;
            }
        }
        len
    }

    /// Collects `amount` values at random from the iterator into a vector.
    ///
    /// This is equivalent to `choose_multiple_fill` except for the result type.
    ///
    /// Although the elements are selected randomly, the order of elements in
    /// the buffer is neither stable nor fully random. If random ordering is
    /// desired, shuffle the result.
    ///
    /// The length of the returned vector equals `amount` unless the iterator
    /// contains insufficient elements, in which case it equals the number of
    /// elements available.
    ///
    /// Complexity is `O(n)` where `n` is the length of the iterator.
    /// For slices, prefer [`SliceRandom::choose_multiple`].
    #[cfg(feature = "alloc")]
    fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
    where R: Rng + ?Sized {
        let mut reservoir = Vec::with_capacity(amount);
        reservoir.extend(self.by_ref().take(amount));

        // Continue unless the iterator was exhausted
        //
        // note: this prevents iterators that "restart" from causing problems.
        // If the iterator stops once, then so do we.
        if reservoir.len() == amount {
            for (i, elem) in self.enumerate() {
                let k = gen_index(rng, i + 1 + amount);
                if let Some(slot) = reservoir.get_mut(k) {
                    *slot = elem;
                }
            }
        } else {
            // Don't hang onto extra memory. There is a corner case where
            // `amount` was much less than `self.len()`.
            reservoir.shrink_to_fit();
        }
        reservoir
    }
}


impl<T> SliceRandom for [T] {
    type Item = T;

    fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
    where R: Rng + ?Sized {
        if self.is_empty() {
            None
        } else {
            Some(&self[gen_index(rng, self.len())])
        }
    }

    fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
    where R: Rng + ?Sized {
        if self.is_empty() {
            None
        } else {
            let len = self.len();
            Some(&mut self[gen_index(rng, len)])
        }
    }

    #[cfg(feature = "alloc")]
    fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
    where R: Rng + ?Sized {
        let amount = ::core::cmp::min(amount, self.len());
        SliceChooseIter {
            slice: self,
            _phantom: Default::default(),
            indices: index::sample(rng, self.len(), amount).into_iter(),
        }
    }

    #[cfg(feature = "alloc")]
    fn choose_weighted<R, F, B, X>(
        &self, rng: &mut R, weight: F,
    ) -> Result<&Self::Item, WeightedError>
    where
        R: Rng + ?Sized,
        F: Fn(&Self::Item) -> B,
        B: SampleBorrow<X>,
        X: SampleUniform
            + for<'a> ::core::ops::AddAssign<&'a X>
            + ::core::cmp::PartialOrd<X>
            + Clone
            + Default,
    {
        use crate::distributions::{Distribution, WeightedIndex};
        let distr = WeightedIndex::new(self.iter().map(weight))?;
        Ok(&self[distr.sample(rng)])
    }

    #[cfg(feature = "alloc")]
    fn choose_weighted_mut<R, F, B, X>(
        &mut self, rng: &mut R, weight: F,
    ) -> Result<&mut Self::Item, WeightedError>
    where
        R: Rng + ?Sized,
        F: Fn(&Self::Item) -> B,
        B: SampleBorrow<X>,
        X: SampleUniform
            + for<'a> ::core::ops::AddAssign<&'a X>
            + ::core::cmp::PartialOrd<X>
            + Clone
            + Default,
    {
        use crate::distributions::{Distribution, WeightedIndex};
        let distr = WeightedIndex::new(self.iter().map(weight))?;
        Ok(&mut self[distr.sample(rng)])
    }

    fn shuffle<R>(&mut self, rng: &mut R)
    where R: Rng + ?Sized {
        for i in (1..self.len()).rev() {
            // invariant: elements with index > i have been locked in place.
            self.swap(i, gen_index(rng, i + 1));
        }
    }

    fn partial_shuffle<R>(
        &mut self, rng: &mut R, amount: usize,
    ) -> (&mut [Self::Item], &mut [Self::Item])
    where R: Rng + ?Sized {
        // This applies Durstenfeld's algorithm for the
        // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
        // for an unbiased permutation, but exits early after choosing `amount`
        // elements.

        let len = self.len();
        let end = if amount >= len { 0 } else { len - amount };

        for i in (end..len).rev() {
            // invariant: elements with index > i have been locked in place.
            self.swap(i, gen_index(rng, i + 1));
        }
        let r = self.split_at_mut(end);
        (r.1, r.0)
    }
}

impl<I> IteratorRandom for I where I: Iterator + Sized {}


/// An iterator over multiple slice elements.
///
/// This struct is created by
/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
    slice: &'a S,
    _phantom: ::core::marker::PhantomData<T>,
    indices: index::IndexVecIntoIter,
}

#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        // TODO: investigate using SliceIndex::get_unchecked when stable
        self.indices.next().map(|i| &self.slice[i as usize])
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.indices.len(), Some(self.indices.len()))
    }
}

#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
    for SliceChooseIter<'a, S, T>
{
    fn len(&self) -> usize {
        self.indices.len()
    }
}


// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
// possible, primarily in order to produce the same output on 32-bit and 64-bit
// platforms.
#[inline]
fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
    if ubound <= (core::u32::MAX as usize) {
        rng.gen_range(0, ubound as u32) as usize
    } else {
        rng.gen_range(0, ubound)
    }
}


#[cfg(test)]
mod test {
    use super::*;
    #[cfg(feature = "alloc")] use crate::Rng;
    #[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec;

    #[test]
    fn test_slice_choose() {
        let mut r = crate::test::rng(107);
        let chars = [
            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
        ];
        let mut chosen = [0i32; 14];
        // The below all use a binomial distribution with n=1000, p=1/14.
        // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
        for _ in 0..1000 {
            let picked = *chars.choose(&mut r).unwrap();
            chosen[(picked as usize) - ('a' as usize)] += 1;
        }
        for count in chosen.iter() {
            assert!(40 < *count && *count < 106);
        }

        chosen.iter_mut().for_each(|x| *x = 0);
        for _ in 0..1000 {
            *chosen.choose_mut(&mut r).unwrap() += 1;
        }
        for count in chosen.iter() {
            assert!(40 < *count && *count < 106);
        }

        let mut v: [isize; 0] = [];
        assert_eq!(v.choose(&mut r), None);
        assert_eq!(v.choose_mut(&mut r), None);
    }

    #[derive(Clone)]
    struct UnhintedIterator<I: Iterator + Clone> {
        iter: I,
    }
    impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
        type Item = I::Item;

        fn next(&mut self) -> Option<Self::Item> {
            self.iter.next()
        }
    }

    #[derive(Clone)]
    struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
        iter: I,
        chunk_remaining: usize,
        chunk_size: usize,
        hint_total_size: bool,
    }
    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
        type Item = I::Item;

        fn next(&mut self) -> Option<Self::Item> {
            if self.chunk_remaining == 0 {
                self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len());
            }
            self.chunk_remaining = self.chunk_remaining.saturating_sub(1);

            self.iter.next()
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (
                self.chunk_remaining,
                if self.hint_total_size {
                    Some(self.iter.len())
                } else {
                    None
                },
            )
        }
    }

    #[derive(Clone)]
    struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
        iter: I,
        window_size: usize,
        hint_total_size: bool,
    }
    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
        type Item = I::Item;

        fn next(&mut self) -> Option<Self::Item> {
            self.iter.next()
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            (
                ::core::cmp::min(self.iter.len(), self.window_size),
                if self.hint_total_size {
                    Some(self.iter.len())
                } else {
                    None
                },
            )
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_iterator_choose() {
        let r = &mut crate::test::rng(109);
        fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
            let mut chosen = [0i32; 9];
            for _ in 0..1000 {
                let picked = iter.clone().choose(r).unwrap();
                chosen[picked] += 1;
            }
            for count in chosen.iter() {
                // Samples should follow Binomial(1000, 1/9)
                // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
                // Note: have seen 153, which is unlikely but not impossible.
                assert!(
                    72 < *count && *count < 154,
                    "count not close to 1000/9: {}",
                    count
                );
            }
        }

        test_iter(r, 0..9);
        test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
        #[cfg(feature = "alloc")]
        test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
        test_iter(r, UnhintedIterator { iter: 0..9 });
        test_iter(r, ChunkHintedIterator {
            iter: 0..9,
            chunk_size: 4,
            chunk_remaining: 4,
            hint_total_size: false,
        });
        test_iter(r, ChunkHintedIterator {
            iter: 0..9,
            chunk_size: 4,
            chunk_remaining: 4,
            hint_total_size: true,
        });
        test_iter(r, WindowHintedIterator {
            iter: 0..9,
            window_size: 2,
            hint_total_size: false,
        });
        test_iter(r, WindowHintedIterator {
            iter: 0..9,
            window_size: 2,
            hint_total_size: true,
        });

        assert_eq!((0..0).choose(r), None);
        assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_shuffle() {
        let mut r = crate::test::rng(108);
        let empty: &mut [isize] = &mut [];
        empty.shuffle(&mut r);
        let mut one = [1];
        one.shuffle(&mut r);
        let b: &[_] = &[1];
        assert_eq!(one, b);

        let mut two = [1, 2];
        two.shuffle(&mut r);
        assert!(two == [1, 2] || two == [2, 1]);

        fn move_last(slice: &mut [usize], pos: usize) {
            // use slice[pos..].rotate_left(1); once we can use that
            let last_val = slice[pos];
            for i in pos..slice.len() - 1 {
                slice[i] = slice[i + 1];
            }
            *slice.last_mut().unwrap() = last_val;
        }
        let mut counts = [0i32; 24];
        for _ in 0..10000 {
            let mut arr: [usize; 4] = [0, 1, 2, 3];
            arr.shuffle(&mut r);
            let mut permutation = 0usize;
            let mut pos_value = counts.len();
            for i in 0..4 {
                pos_value /= 4 - i;
                let pos = arr.iter().position(|&x| x == i).unwrap();
                assert!(pos < (4 - i));
                permutation += pos * pos_value;
                move_last(&mut arr, pos);
                assert_eq!(arr[3], i);
            }
            for i in 0..4 {
                assert_eq!(arr[i], i);
            }
            counts[permutation] += 1;
        }
        for count in counts.iter() {
            // Binomial(10000, 1/24) with average 416.667
            // Octave: binocdf(n, 10000, 1/24)
            // 99.9% chance samples lie within this range:
            assert!(352 <= *count && *count <= 483, "count: {}", count);
        }
    }

    #[test]
    fn test_partial_shuffle() {
        let mut r = crate::test::rng(118);

        let mut empty: [u32; 0] = [];
        let res = empty.partial_shuffle(&mut r, 10);
        assert_eq!((res.0.len(), res.1.len()), (0, 0));

        let mut v = [1, 2, 3, 4, 5];
        let res = v.partial_shuffle(&mut r, 2);
        assert_eq!((res.0.len(), res.1.len()), (2, 3));
        assert!(res.0[0] != res.0[1]);
        // First elements are only modified if selected, so at least one isn't modified:
        assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
    }

    #[test]
    #[cfg(feature = "alloc")]
    fn test_sample_iter() {
        let min_val = 1;
        let max_val = 100;

        let mut r = crate::test::rng(401);
        let vals = (min_val..max_val).collect::<Vec<i32>>();
        let small_sample = vals.iter().choose_multiple(&mut r, 5);
        let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);

        assert_eq!(small_sample.len(), 5);
        assert_eq!(large_sample.len(), vals.len());
        // no randomization happens when amount >= len
        assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());

        assert!(small_sample
            .iter()
            .all(|e| { **e >= min_val && **e <= max_val }));
    }

    #[test]
    #[cfg(feature = "alloc")]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted() {
        let mut r = crate::test::rng(406);
        const N_REPS: u32 = 3000;
        let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
        let total_weight = weights.iter().sum::<u32>() as f32;

        let verify = |result: [i32; 14]| {
            for (i, count) in result.iter().enumerate() {
                let exp = (weights[i] * N_REPS) as f32 / total_weight;
                let mut err = (*count as f32 - exp).abs();
                if err != 0.0 {
                    err /= exp;
                }
                assert!(err <= 0.25);
            }
        };

        // choose_weighted
        fn get_weight<T>(item: &(u32, T)) -> u32 {
            item.0
        }
        let mut chosen = [0i32; 14];
        let mut items = [(0u32, 0usize); 14]; // (weight, index)
        for (i, item) in items.iter_mut().enumerate() {
            *item = (weights[i], i);
        }
        for _ in 0..N_REPS {
            let item = items.choose_weighted(&mut r, get_weight).unwrap();
            chosen[item.1] += 1;
        }
        verify(chosen);

        // choose_weighted_mut
        let mut items = [(0u32, 0i32); 14]; // (weight, count)
        for (i, item) in items.iter_mut().enumerate() {
            *item = (weights[i], 0);
        }
        for _ in 0..N_REPS {
            items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
        }
        for (ch, item) in chosen.iter_mut().zip(items.iter()) {
            *ch = item.1;
        }
        verify(chosen);

        // Check error cases
        let empty_slice = &mut [10][0..0];
        assert_eq!(
            empty_slice.choose_weighted(&mut r, |_| 1),
            Err(WeightedError::NoItem)
        );
        assert_eq!(
            empty_slice.choose_weighted_mut(&mut r, |_| 1),
            Err(WeightedError::NoItem)
        );
        assert_eq!(
            ['x'].choose_weighted_mut(&mut r, |_| 0),
            Err(WeightedError::AllWeightsZero)
        );
        assert_eq!(
            [0, -1].choose_weighted_mut(&mut r, |x| *x),
            Err(WeightedError::InvalidWeight)
        );
        assert_eq!(
            [-1, 0].choose_weighted_mut(&mut r, |x| *x),
            Err(WeightedError::InvalidWeight)
        );
    }
}