1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
use std::cmp;
use std::collections::{BTreeSet, VecDeque};
use std::fmt;
use std::mem::size_of;
use std::ops::{Index, IndexMut};

use crate::ahocorasick::MatchKind;
use crate::automaton::Automaton;
use crate::classes::{ByteClassBuilder, ByteClasses};
use crate::error::Result;
use crate::prefilter::{self, opposite_ascii_case, Prefilter, PrefilterObj};
use crate::state_id::{dead_id, fail_id, usize_to_state_id, StateID};
use crate::Match;

/// The identifier for a pattern, which is simply the position of the pattern
/// in the sequence of patterns given by the caller.
pub type PatternID = usize;

/// The length of a pattern, in bytes.
pub type PatternLength = usize;

/// An Aho-Corasick automaton, represented as an NFA.
///
/// This is the classical formulation of Aho-Corasick, which involves building
/// up a prefix trie of a given set of patterns, and then wiring up failure
/// transitions between states in order to guarantee linear time matching. The
/// standard formulation is, technically, an NFA because of these failure
/// transitions. That is, one can see them as enabling the automaton to be in
/// multiple states at once. Indeed, during search, it is possible to check
/// the transitions on multiple states for a single input byte.
///
/// This particular implementation not only supports the standard style of
/// matching, but also provides a mode for choosing leftmost-first or
/// leftmost-longest match semantics. When a leftmost mode is chosen, some
/// failure transitions that would otherwise be added are elided. See
/// the documentation of `MatchKind` for more details and examples on how the
/// match semantics may differ.
///
/// If one wants a DFA, then it is necessary to first build an NFA and convert
/// it into a DFA. Note, however, that because we've constrained ourselves to
/// matching literal patterns, this does not need to use subset construction
/// for determinization. Instead, the DFA has at most a number of states
/// equivalent to the number of NFA states. The only real difference between
/// them is that all failure transitions are followed and pre-computed. This
/// uses much more memory, but also executes searches more quickly.
#[derive(Clone)]
pub struct NFA<S> {
    /// The match semantics built into this NFA.
    match_kind: MatchKind,
    /// The start state id as an index into `states`.
    start_id: S,
    /// The length, in bytes, of the longest pattern in this automaton. This
    /// information is useful for keeping correct buffer sizes when searching
    /// on streams.
    max_pattern_len: usize,
    /// The total number of patterns added to this automaton, including
    /// patterns that may never be matched.
    pattern_count: usize,
    /// The number of bytes of heap used by this NFA's transition table.
    heap_bytes: usize,
    /// A prefilter for quickly skipping to candidate matches, if pertinent.
    prefilter: Option<PrefilterObj>,
    /// Whether this automaton anchors all matches to the start of input.
    anchored: bool,
    /// A set of equivalence classes in terms of bytes. We compute this while
    /// building the NFA, but don't use it in the NFA's states. Instead, we
    /// use this for building the DFA. We store it on the NFA since it's easy
    /// to compute while visiting the the patterns.
    byte_classes: ByteClasses,
    /// A set of states. Each state defines its own transitions, a fail
    /// transition and a set of indices corresponding to matches.
    ///
    /// The first state is always the fail state, which is used only as a
    /// sentinel. Namely, in the final NFA, no transition into the fail state
    /// exists. (Well, they do, but they aren't followed. Instead, the state's
    /// failure transition is followed.)
    ///
    /// The second state (index 1) is always the dead state. Dead states are
    /// in every automaton, but only used when leftmost-{first,longest} match
    /// semantics are enabled. Specifically, they instruct search to stop
    /// at specific points in order to report the correct match location. In
    /// the standard Aho-Corasick construction, there are no transitions to
    /// the dead state.
    ///
    /// The third state (index 2) is generally intended to be the starting or
    /// "root" state.
    states: Vec<State<S>>,
}

impl<S: StateID> NFA<S> {
    /// Returns the equivalence classes of bytes found while constructing
    /// this NFA.
    ///
    /// Note that the NFA doesn't actually make use of these equivalence
    /// classes. Instead, these are useful for building the DFA when desired.
    pub fn byte_classes(&self) -> &ByteClasses {
        &self.byte_classes
    }

    /// Returns a prefilter, if one exists.
    pub fn prefilter_obj(&self) -> Option<&PrefilterObj> {
        self.prefilter.as_ref()
    }

    /// Returns the total number of heap bytes used by this NFA's transition
    /// table.
    pub fn heap_bytes(&self) -> usize {
        self.heap_bytes
            + self.prefilter.as_ref().map_or(0, |p| p.as_ref().heap_bytes())
    }

    /// Return the length of the longest pattern in this automaton.
    pub fn max_pattern_len(&self) -> usize {
        self.max_pattern_len
    }

    /// Return the total number of patterns added to this automaton.
    pub fn pattern_count(&self) -> usize {
        self.pattern_count
    }

    /// Returns the total number of states in this NFA.
    pub fn state_len(&self) -> usize {
        self.states.len()
    }

    /// Returns the matches for the given state.
    pub fn matches(&self, id: S) -> &[(PatternID, PatternLength)] {
        &self.states[id.to_usize()].matches
    }

    /// Returns an iterator over all transitions in the given state according
    /// to the given equivalence classes, including transitions to `fail_id()`.
    /// The number of transitions returned is always equivalent to the number
    /// of equivalence classes.
    pub fn iter_all_transitions<F: FnMut(u8, S)>(
        &self,
        byte_classes: &ByteClasses,
        id: S,
        f: F,
    ) {
        self.states[id.to_usize()].trans.iter_all(byte_classes, f);
    }

    /// Returns the failure transition for the given state.
    pub fn failure_transition(&self, id: S) -> S {
        self.states[id.to_usize()].fail
    }

    /// Returns the next state for the given state and input byte.
    ///
    /// Note that this does not follow failure transitions. As such, the id
    /// returned may be `fail_id`.
    pub fn next_state(&self, current: S, input: u8) -> S {
        self.states[current.to_usize()].next_state(input)
    }

    fn state(&self, id: S) -> &State<S> {
        &self.states[id.to_usize()]
    }

    fn state_mut(&mut self, id: S) -> &mut State<S> {
        &mut self.states[id.to_usize()]
    }

    fn start(&self) -> &State<S> {
        self.state(self.start_id)
    }

    fn start_mut(&mut self) -> &mut State<S> {
        let id = self.start_id;
        self.state_mut(id)
    }

    fn iter_transitions_mut(&mut self, id: S) -> IterTransitionsMut<'_, S> {
        IterTransitionsMut::new(self, id)
    }

    fn copy_matches(&mut self, src: S, dst: S) {
        let (src, dst) =
            get_two_mut(&mut self.states, src.to_usize(), dst.to_usize());
        dst.matches.extend_from_slice(&src.matches);
    }

    fn copy_empty_matches(&mut self, dst: S) {
        let start_id = self.start_id;
        self.copy_matches(start_id, dst);
    }

    fn add_dense_state(&mut self, depth: usize) -> Result<S> {
        let trans = Transitions::Dense(Dense::new());
        let id = usize_to_state_id(self.states.len())?;
        self.states.push(State {
            trans,
            // Anchored automatons do not have any failure transitions.
            fail: if self.anchored { dead_id() } else { self.start_id },
            depth,
            matches: vec![],
        });
        Ok(id)
    }

    fn add_sparse_state(&mut self, depth: usize) -> Result<S> {
        let trans = Transitions::Sparse(vec![]);
        let id = usize_to_state_id(self.states.len())?;
        self.states.push(State {
            trans,
            // Anchored automatons do not have any failure transitions.
            fail: if self.anchored { dead_id() } else { self.start_id },
            depth,
            matches: vec![],
        });
        Ok(id)
    }
}

impl<S: StateID> Automaton for NFA<S> {
    type ID = S;

    fn match_kind(&self) -> &MatchKind {
        &self.match_kind
    }

    fn anchored(&self) -> bool {
        self.anchored
    }

    fn prefilter(&self) -> Option<&dyn Prefilter> {
        self.prefilter.as_ref().map(|p| p.as_ref())
    }

    fn start_state(&self) -> S {
        self.start_id
    }

    fn is_valid(&self, id: S) -> bool {
        id.to_usize() < self.states.len()
    }

    fn is_match_state(&self, id: S) -> bool {
        self.states[id.to_usize()].is_match()
    }

    fn get_match(
        &self,
        id: S,
        match_index: usize,
        end: usize,
    ) -> Option<Match> {
        let state = match self.states.get(id.to_usize()) {
            None => return None,
            Some(state) => state,
        };
        state.matches.get(match_index).map(|&(id, len)| Match {
            pattern: id,
            len,
            end,
        })
    }

    fn match_count(&self, id: S) -> usize {
        self.states[id.to_usize()].matches.len()
    }

    fn next_state(&self, mut current: S, input: u8) -> S {
        // This terminates since:
        //
        // 1. `State.fail` never points to fail_id().
        // 2. All `State.fail` values point to a state closer to `start`.
        // 3. The start state has no transitions to fail_id().
        loop {
            let state = &self.states[current.to_usize()];
            let next = state.next_state(input);
            if next != fail_id() {
                return next;
            }
            current = state.fail;
        }
    }
}

/// A representation of an NFA state for an Aho-Corasick automaton.
///
/// It contains the transitions to the next state, a failure transition for
/// cases where there exists no other transition for the current input byte,
/// the matches implied by visiting this state (if any) and the depth of this
/// state. The depth of a state is simply the distance from it to the start
/// state in the automaton, where the depth of the start state is 0.
#[derive(Clone, Debug)]
pub struct State<S> {
    trans: Transitions<S>,
    fail: S,
    matches: Vec<(PatternID, PatternLength)>,
    // TODO: Strictly speaking, this isn't needed for searching. It's only
    // used when building an NFA that supports leftmost match semantics. We
    // could drop this from the state and dynamically build a map only when
    // computing failure transitions, but it's not clear which is better.
    // Benchmark this.
    depth: usize,
}

impl<S: StateID> State<S> {
    fn heap_bytes(&self) -> usize {
        self.trans.heap_bytes()
            + (self.matches.len() * size_of::<(PatternID, PatternLength)>())
    }

    fn add_match(&mut self, i: PatternID, len: PatternLength) {
        self.matches.push((i, len));
    }

    fn is_match(&self) -> bool {
        !self.matches.is_empty()
    }

    fn get_longest_match_len(&self) -> Option<usize> {
        // Why is this true? Because the first match in any matching state
        // will always correspond to the match added to it during trie
        // construction (since when we copy matches due to failure transitions,
        // we always append them). Therefore, it follows that the first match
        // must always be longest since any subsequent match must be from a
        // failure transition, and a failure transition by construction points
        // to a proper suffix. A proper suffix is, by definition, smaller.
        self.matches.get(0).map(|&(_, len)| len)
    }

    fn next_state(&self, input: u8) -> S {
        self.trans.next_state(input)
    }

    fn set_next_state(&mut self, input: u8, next: S) {
        self.trans.set_next_state(input, next);
    }
}

/// Represents the transitions for a single dense state.
///
/// The primary purpose here is to encapsulate index access. Namely, since a
/// dense representation always contains 256 elements, all values of `u8` are
/// valid indices.
#[derive(Clone, Debug)]
struct Dense<S>(Vec<S>);

impl<S> Dense<S>
where
    S: StateID,
{
    fn new() -> Self {
        Dense(vec![fail_id(); 256])
    }

    #[inline]
    fn len(&self) -> usize {
        self.0.len()
    }
}

impl<S> Index<u8> for Dense<S> {
    type Output = S;

    #[inline]
    fn index(&self, i: u8) -> &S {
        // SAFETY: This is safe because all dense transitions have
        // exactly 256 elements, so all u8 values are valid indices.
        &self.0[i as usize]
    }
}

impl<S> IndexMut<u8> for Dense<S> {
    #[inline]
    fn index_mut(&mut self, i: u8) -> &mut S {
        // SAFETY: This is safe because all dense transitions have
        // exactly 256 elements, so all u8 values are valid indices.
        &mut self.0[i as usize]
    }
}

/// A representation of transitions in an NFA.
///
/// Transitions have either a sparse representation, which is slower for
/// lookups but uses less memory, or a dense representation, which is faster
/// for lookups but uses more memory. In the sparse representation, the absence
/// of a state implies a transition to `fail_id()`. Transitions to `dead_id()`
/// are still explicitly represented.
///
/// For the NFA, by default, we use a dense representation for transitions for
/// states close to the start state because it's likely these are the states
/// that will be most frequently visited.
#[derive(Clone, Debug)]
enum Transitions<S> {
    Sparse(Vec<(u8, S)>),
    Dense(Dense<S>),
}

impl<S: StateID> Transitions<S> {
    fn heap_bytes(&self) -> usize {
        match *self {
            Transitions::Sparse(ref sparse) => {
                sparse.len() * size_of::<(u8, S)>()
            }
            Transitions::Dense(ref dense) => dense.len() * size_of::<S>(),
        }
    }

    fn next_state(&self, input: u8) -> S {
        match *self {
            Transitions::Sparse(ref sparse) => {
                for &(b, id) in sparse {
                    if b == input {
                        return id;
                    }
                }
                fail_id()
            }
            Transitions::Dense(ref dense) => dense[input],
        }
    }

    fn set_next_state(&mut self, input: u8, next: S) {
        match *self {
            Transitions::Sparse(ref mut sparse) => {
                match sparse.binary_search_by_key(&input, |&(b, _)| b) {
                    Ok(i) => sparse[i] = (input, next),
                    Err(i) => sparse.insert(i, (input, next)),
                }
            }
            Transitions::Dense(ref mut dense) => {
                dense[input] = next;
            }
        }
    }

    /// Iterate over transitions in this state while skipping over transitions
    /// to `fail_id()`.
    fn iter<F: FnMut(u8, S)>(&self, mut f: F) {
        match *self {
            Transitions::Sparse(ref sparse) => {
                for &(b, id) in sparse {
                    f(b, id);
                }
            }
            Transitions::Dense(ref dense) => {
                for b in AllBytesIter::new() {
                    let id = dense[b];
                    if id != fail_id() {
                        f(b, id);
                    }
                }
            }
        }
    }

    /// Iterate over all transitions in this state according to the given
    /// equivalence classes, including transitions to `fail_id()`.
    fn iter_all<F: FnMut(u8, S)>(&self, classes: &ByteClasses, mut f: F) {
        if classes.is_singleton() {
            match *self {
                Transitions::Sparse(ref sparse) => {
                    sparse_iter(sparse, f);
                }
                Transitions::Dense(ref dense) => {
                    for b in AllBytesIter::new() {
                        f(b, dense[b]);
                    }
                }
            }
        } else {
            // In this case, we only want to yield a single byte for each
            // equivalence class.
            match *self {
                Transitions::Sparse(ref sparse) => {
                    let mut last_class = None;
                    sparse_iter(sparse, |b, next| {
                        let class = classes.get(b);
                        if last_class != Some(class) {
                            last_class = Some(class);
                            f(b, next);
                        }
                    })
                }
                Transitions::Dense(ref dense) => {
                    for b in classes.representatives() {
                        f(b, dense[b]);
                    }
                }
            }
        }
    }
}

/// Iterator over transitions in a state, skipping transitions to `fail_id()`.
///
/// This abstracts over the representation of NFA transitions, which may be
/// either in a sparse or dense representation.
///
/// This somewhat idiosyncratically borrows the NFA mutably, so that when one
/// is iterating over transitions, the caller can still mutate the NFA. This
/// is useful when creating failure transitions.
#[derive(Debug)]
struct IterTransitionsMut<'a, S: StateID> {
    nfa: &'a mut NFA<S>,
    state_id: S,
    cur: usize,
}

impl<'a, S: StateID> IterTransitionsMut<'a, S> {
    fn new(nfa: &'a mut NFA<S>, state_id: S) -> IterTransitionsMut<'a, S> {
        IterTransitionsMut { nfa, state_id, cur: 0 }
    }

    fn nfa(&mut self) -> &mut NFA<S> {
        self.nfa
    }
}

impl<'a, S: StateID> Iterator for IterTransitionsMut<'a, S> {
    type Item = (u8, S);

    fn next(&mut self) -> Option<(u8, S)> {
        match self.nfa.states[self.state_id.to_usize()].trans {
            Transitions::Sparse(ref sparse) => {
                if self.cur >= sparse.len() {
                    return None;
                }
                let i = self.cur;
                self.cur += 1;
                Some(sparse[i])
            }
            Transitions::Dense(ref dense) => {
                while self.cur < dense.len() {
                    // There are always exactly 255 transitions in dense repr.
                    debug_assert!(self.cur < 256);

                    let b = self.cur as u8;
                    let id = dense[b];
                    self.cur += 1;
                    if id != fail_id() {
                        return Some((b, id));
                    }
                }
                None
            }
        }
    }
}

/// A simple builder for configuring the NFA construction of Aho-Corasick.
#[derive(Clone, Debug)]
pub struct Builder {
    dense_depth: usize,
    match_kind: MatchKind,
    prefilter: bool,
    anchored: bool,
    ascii_case_insensitive: bool,
}

impl Default for Builder {
    fn default() -> Builder {
        Builder {
            dense_depth: 2,
            match_kind: MatchKind::default(),
            prefilter: true,
            anchored: false,
            ascii_case_insensitive: false,
        }
    }
}

impl Builder {
    pub fn new() -> Builder {
        Builder::default()
    }

    pub fn build<I, P, S: StateID>(&self, patterns: I) -> Result<NFA<S>>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        Compiler::new(self)?.compile(patterns)
    }

    pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
        self.match_kind = kind;
        self
    }

    pub fn dense_depth(&mut self, depth: usize) -> &mut Builder {
        self.dense_depth = depth;
        self
    }

    pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
        self.prefilter = yes;
        self
    }

    pub fn anchored(&mut self, yes: bool) -> &mut Builder {
        self.anchored = yes;
        self
    }

    pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
        self.ascii_case_insensitive = yes;
        self
    }
}

/// A compiler uses a builder configuration and builds up the NFA formulation
/// of an Aho-Corasick automaton. This roughly corresponds to the standard
/// formulation described in textbooks.
#[derive(Debug)]
struct Compiler<'a, S: StateID> {
    builder: &'a Builder,
    prefilter: prefilter::Builder,
    nfa: NFA<S>,
    byte_classes: ByteClassBuilder,
}

impl<'a, S: StateID> Compiler<'a, S> {
    fn new(builder: &'a Builder) -> Result<Compiler<'a, S>> {
        Ok(Compiler {
            builder,
            prefilter: prefilter::Builder::new(builder.match_kind)
                .ascii_case_insensitive(builder.ascii_case_insensitive),
            nfa: NFA {
                match_kind: builder.match_kind,
                start_id: usize_to_state_id(2)?,
                max_pattern_len: 0,
                pattern_count: 0,
                heap_bytes: 0,
                prefilter: None,
                anchored: builder.anchored,
                byte_classes: ByteClasses::singletons(),
                states: vec![],
            },
            byte_classes: ByteClassBuilder::new(),
        })
    }

    fn compile<I, P>(mut self, patterns: I) -> Result<NFA<S>>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        self.add_state(0)?; // the fail state, which is never entered
        self.add_state(0)?; // the dead state, only used for leftmost
        self.add_state(0)?; // the start state
        self.build_trie(patterns)?;
        self.add_start_state_loop();
        self.add_dead_state_loop();
        if !self.builder.anchored {
            if self.match_kind().is_leftmost() {
                self.fill_failure_transitions_leftmost();
            } else {
                self.fill_failure_transitions_standard();
            }
        }
        self.close_start_state_loop();
        self.nfa.byte_classes = self.byte_classes.build();
        if !self.builder.anchored {
            self.nfa.prefilter = self.prefilter.build();
        }
        self.calculate_size();
        Ok(self.nfa)
    }

    /// This sets up the initial prefix trie that makes up the Aho-Corasick
    /// automaton. Effectively, it creates the basic structure of the
    /// automaton, where every pattern given has a path from the start state to
    /// the end of the pattern.
    fn build_trie<I, P>(&mut self, patterns: I) -> Result<()>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        'PATTERNS: for (pati, pat) in patterns.into_iter().enumerate() {
            let pat = pat.as_ref();
            self.nfa.max_pattern_len =
                cmp::max(self.nfa.max_pattern_len, pat.len());
            self.nfa.pattern_count += 1;

            let mut prev = self.nfa.start_id;
            let mut saw_match = false;
            for (depth, &b) in pat.iter().enumerate() {
                // When leftmost-first match semantics are requested, we
                // specifically stop adding patterns when a previously added
                // pattern is a prefix of it. We avoid adding it because
                // leftmost-first semantics imply that the pattern can never
                // match. This is not just an optimization to save space! It
                // is necessary for correctness. In fact, this is the only
                // difference in the automaton between the implementations for
                // leftmost-first and leftmost-longest.
                saw_match = saw_match || self.nfa.state(prev).is_match();
                if self.builder.match_kind.is_leftmost_first() && saw_match {
                    // Skip to the next pattern immediately. This avoids
                    // incorrectly adding a match after this loop terminates.
                    continue 'PATTERNS;
                }

                // Add this byte to our equivalence classes. We don't use these
                // for NFA construction. These are instead used only if we're
                // building a DFA. They would technically be useful for the
                // NFA, but it would require a second pass over the patterns.
                self.byte_classes.set_range(b, b);
                if self.builder.ascii_case_insensitive {
                    let b = opposite_ascii_case(b);
                    self.byte_classes.set_range(b, b);
                }

                // If the transition from prev using the current byte already
                // exists, then just move through it. Otherwise, add a new
                // state. We track the depth here so that we can determine
                // how to represent transitions. States near the start state
                // use a dense representation that uses more memory but is
                // faster. Other states use a sparse representation that uses
                // less memory but is slower.
                let next = self.nfa.state(prev).next_state(b);
                if next != fail_id() {
                    prev = next;
                } else {
                    let next = self.add_state(depth + 1)?;
                    self.nfa.state_mut(prev).set_next_state(b, next);
                    if self.builder.ascii_case_insensitive {
                        let b = opposite_ascii_case(b);
                        self.nfa.state_mut(prev).set_next_state(b, next);
                    }
                    prev = next;
                }
            }
            // Once the pattern has been added, log the match in the final
            // state that it reached.
            self.nfa.state_mut(prev).add_match(pati, pat.len());
            // ... and hand it to the prefilter builder, if applicable.
            if self.builder.prefilter {
                self.prefilter.add(pat);
            }
        }
        Ok(())
    }

    /// This routine creates failure transitions according to the standard
    /// textbook formulation of the Aho-Corasick algorithm.
    ///
    /// Building failure transitions is the most interesting part of building
    /// the Aho-Corasick automaton, because they are what allow searches to
    /// be performed in linear time. Specifically, a failure transition is
    /// a single transition associated with each state that points back to
    /// the longest proper suffix of the pattern being searched. The failure
    /// transition is followed whenever there exists no transition on the
    /// current state for the current input byte. If there is no other proper
    /// suffix, then the failure transition points back to the starting state.
    ///
    /// For example, let's say we built an Aho-Corasick automaton with the
    /// following patterns: 'abcd' and 'cef'. The trie looks like this:
    ///
    /// ```ignore
    ///          a - S1 - b - S2 - c - S3 - d - S4*
    ///         /
    ///     S0 - c - S5 - e - S6 - f - S7*
    /// ```
    ///
    /// At this point, it should be fairly straight-forward to see how this
    /// trie can be used in a simplistic way. At any given position in the
    /// text we're searching (called the "subject" string), all we need to do
    /// is follow the transitions in the trie by consuming one transition for
    /// each byte in the subject string. If we reach a match state, then we can
    /// report that location as a match.
    ///
    /// The trick comes when searching a subject string like 'abcef'. We'll
    /// initially follow the transition from S0 to S1 and wind up in S3 after
    /// observng the 'c' byte. At this point, the next byte is 'e' but state
    /// S3 has no transition for 'e', so the search fails. We then would need
    /// to restart the search at the next position in 'abcef', which
    /// corresponds to 'b'. The match would fail, but the next search starting
    /// at 'c' would finally succeed. The problem with this approach is that
    /// we wind up searching the subject string potentially many times. In
    /// effect, this makes the algorithm have worst case `O(n * m)` complexity,
    /// where `n ~ len(subject)` and `m ~ len(all patterns)`. We would instead
    /// like to achieve a `O(n + m)` worst case complexity.
    ///
    /// This is where failure transitions come in. Instead of dying at S3 in
    /// the first search, the automaton can instruct the search to move to
    /// another part of the automaton that corresponds to a suffix of what
    /// we've seen so far. Recall that we've seen 'abc' in the subject string,
    /// and the automaton does indeed have a non-empty suffix, 'c', that could
    /// potentially lead to another match. Thus, the actual Aho-Corasick
    /// automaton for our patterns in this case looks like this:
    ///
    /// ```ignore
    ///          a - S1 - b - S2 - c - S3 - d - S4*
    ///         /                      /
    ///        /       ----------------
    ///       /       /
    ///     S0 - c - S5 - e - S6 - f - S7*
    /// ```
    ///
    /// That is, we have a failure transition from S3 to S5, which is followed
    /// exactly in cases when we are in state S3 but see any byte other than
    /// 'd' (that is, we've "failed" to find a match in this portion of our
    /// trie). We know we can transition back to S5 because we've already seen
    /// a 'c' byte, so we don't need to re-scan it. We can then pick back up
    /// with the search starting at S5 and complete our match.
    ///
    /// Adding failure transitions to a trie is fairly simple, but subtle. The
    /// key issue is that you might have multiple failure transition that you
    /// need to follow. For example, look at the trie for the patterns
    /// 'abcd', 'b', 'bcd' and 'cd':
    ///
    /// ```ignore
    ///        - a - S1 - b - S2 - c - S3 - d - S4*
    ///       /
    ///     S0 - b - S5* - c - S6 - d - S7*
    ///       \
    ///        - c - S8 - d - S9*
    /// ```
    ///
    /// The failure transitions for this trie are defined from S2 to S5,
    /// S3 to S6 and S6 to S8. Moreover, state S2 needs to track that it
    /// corresponds to a match, since its failure transition to S5 is itself
    /// a match state.
    ///
    /// Perhaps simplest way to think about adding these failure transitions
    /// is recursively. That is, if you know the failure transitions for every
    /// possible previous state that could be visited (e.g., when computing the
    /// failure transition for S3, you already know the failure transitions
    /// for S0, S1 and S2), then you can simply follow the failure transition
    /// of the previous state and check whether the incoming transition is
    /// defined after following the failure transition.
    ///
    /// For example, when determining the failure state for S3, by our
    /// assumptions, we already know that there is a failure transition from
    /// S2 (the previous state) to S5. So we follow that transition and check
    /// whether the transition connecting S2 to S3 is defined. Indeed, it is,
    /// as there is a transition from S5 to S6 for the byte 'c'. If no such
    /// transition existed, we could keep following the failure transitions
    /// until we reach the start state, which is the failure transition for
    /// every state that has no corresponding proper suffix.
    ///
    /// We don't actually use recursion to implement this, but instead, use a
    /// breadth first search of the automaton. Our base case is the start
    /// state, whose failure transition is just a transition to itself.
    fn fill_failure_transitions_standard(&mut self) {
        // Initialize the queue for breadth first search with all transitions
        // out of the start state. We handle the start state specially because
        // we only want to follow non-self transitions. If we followed self
        // transitions, then this would never terminate.
        let mut queue = VecDeque::new();
        let mut seen = self.queued_set();
        for b in AllBytesIter::new() {
            let next = self.nfa.start().next_state(b);
            if next != self.nfa.start_id {
                if !seen.contains(next) {
                    queue.push_back(next);
                    seen.insert(next);
                }
            }
        }
        while let Some(id) = queue.pop_front() {
            let mut it = self.nfa.iter_transitions_mut(id);
            while let Some((b, next)) = it.next() {
                if seen.contains(next) {
                    // The only way to visit a duplicate state in a transition
                    // list is when ASCII case insensitivity is enabled. In
                    // this case, we want to skip it since it's redundant work.
                    // But it would also end up duplicating matches, which
                    // results in reporting duplicate matches in some cases.
                    // See the 'acasei010' regression test.
                    continue;
                }
                queue.push_back(next);
                seen.insert(next);

                let mut fail = it.nfa().state(id).fail;
                while it.nfa().state(fail).next_state(b) == fail_id() {
                    fail = it.nfa().state(fail).fail;
                }
                fail = it.nfa().state(fail).next_state(b);
                it.nfa().state_mut(next).fail = fail;
                it.nfa().copy_matches(fail, next);
            }
            // If the start state is a match state, then this automaton can
            // match the empty string. This implies all states are match states
            // since every position matches the empty string, so copy the
            // matches from the start state to every state. Strictly speaking,
            // this is only necessary for overlapping matches since each
            // non-empty non-start match state needs to report empty matches
            // in addition to its own. For the non-overlapping case, such
            // states only report the first match, which is never empty since
            // it isn't a start state.
            it.nfa().copy_empty_matches(id);
        }
    }

    /// This routine is just like fill_failure_transitions_standard, except
    /// it adds failure transitions in a way that preserves leftmost match
    /// semantics (for both leftmost-first and leftmost-longest).
    ///
    /// The algorithms are so similar that it would be possible to write it
    /// generically. But doing so without overhead would require a bit of
    /// ceremony, so we just copy it and add in the extra leftmost logic.
    /// Moreover, the standard algorithm above is so simple that it feels like
    /// a crime to disturb it.
    ///
    /// In effect, this proceeds just like the standard approach, but we
    /// specifically add only a subset of all failure transitions. Namely, we
    /// only add failure transitions that either do not occur after a match
    /// or failure transitions that do occur after a match but preserve the
    /// match. The comments in the implementation below should help.
    ///
    /// N.B. The only differences in the automaton between leftmost-first and
    /// leftmost-longest are in trie construction. Otherwise, both have exactly
    /// the same set of failure transitions. leftmost-longest adds everything
    /// to the trie, where as leftmost-first skips any patterns for which there
    /// exists a prefix of it that was added earlier.
    ///
    /// N.B. I came up with this algorithm on my own, and after scouring all of
    /// the other AC implementations I know of (Perl, Snort, many on GitHub).
    /// I couldn't find any that implement leftmost semantics like this.
    /// Perl of course needs leftmost-first semantics, but they implement it
    /// with a seeming hack at *search* time instead of encoding it into the
    /// automaton. There are also a couple Java libraries that support leftmost
    /// longest semantics, but they do it by building a queue of matches at
    /// search time, which is even worse than what Perl is doing. ---AG
    fn fill_failure_transitions_leftmost(&mut self) {
        /// Represents an item in our queue of states to process.
        ///
        /// Fundamentally, this queue serves the same purpose as the queue
        /// for filling failure transitions using the standard formulation.
        /// In the leftmost case, though, we need to track a bit more
        /// information. See comments below.
        #[derive(Clone, Copy, Debug)]
        struct QueuedState<S> {
            /// The id of the state to visit.
            id: S,
            /// The depth at which the first match was observed in the path
            /// to this state. Note that this corresponds to the depth at
            /// which the beginning of the match was detected. If no match
            /// has been seen, then this is None.
            match_at_depth: Option<usize>,
        }

        impl<S: StateID> QueuedState<S> {
            /// Create a queued state corresponding to the given NFA's start
            /// state.
            fn start(nfa: &NFA<S>) -> QueuedState<S> {
                let match_at_depth =
                    if nfa.start().is_match() { Some(0) } else { None };
                QueuedState { id: nfa.start_id, match_at_depth }
            }

            /// Return the next state to queue up. The given id must be a state
            /// corresponding to a single transition from this queued state.
            fn next_queued_state(
                &self,
                nfa: &NFA<S>,
                id: S,
            ) -> QueuedState<S> {
                let match_at_depth = self.next_match_at_depth(nfa, id);
                QueuedState { id, match_at_depth }
            }

            /// Return the earliest depth at which a match has occurred for
            /// the given state. The given state must correspond to a single
            /// transition from this queued state.
            fn next_match_at_depth(
                &self,
                nfa: &NFA<S>,
                next: S,
            ) -> Option<usize> {
                // This is a little tricky. If the previous state has already
                // seen a match or if `next` isn't a match state, then nothing
                // needs to change since a later state cannot find an earlier
                // match.
                match self.match_at_depth {
                    Some(x) => return Some(x),
                    None if nfa.state(next).is_match() => {}
                    None => return None,
                }
                let depth = nfa.state(next).depth
                    - nfa.state(next).get_longest_match_len().unwrap()
                    + 1;
                Some(depth)
            }
        }

        // Initialize the queue for breadth first search with all transitions
        // out of the start state. We handle the start state specially because
        // we only want to follow non-self transitions. If we followed self
        // transitions, then this would never terminate.
        let mut queue: VecDeque<QueuedState<S>> = VecDeque::new();
        let mut seen = self.queued_set();
        let start = QueuedState::start(&self.nfa);
        for b in AllBytesIter::new() {
            let next_id = self.nfa.start().next_state(b);
            if next_id != start.id {
                let next = start.next_queued_state(&self.nfa, next_id);
                if !seen.contains(next.id) {
                    queue.push_back(next);
                    seen.insert(next.id);
                }
                // If a state immediately following the start state is a match
                // state, then we never want to follow its failure transition
                // since the failure transition necessarily leads back to the
                // start state, which we never want to do for leftmost matching
                // after a match has been found.
                //
                // N.B. This is a special case of the more general handling
                // found below.
                if self.nfa.state(next_id).is_match() {
                    self.nfa.state_mut(next_id).fail = dead_id();
                }
            }
        }
        while let Some(item) = queue.pop_front() {
            let mut any_trans = false;
            let mut it = self.nfa.iter_transitions_mut(item.id);
            while let Some((b, next_id)) = it.next() {
                any_trans = true;

                // Queue up the next state.
                let next = item.next_queued_state(it.nfa(), next_id);
                if seen.contains(next.id) {
                    // The only way to visit a duplicate state in a transition
                    // list is when ASCII case insensitivity is enabled. In
                    // this case, we want to skip it since it's redundant work.
                    // But it would also end up duplicating matches, which
                    // results in reporting duplicate matches in some cases.
                    // See the 'acasei010' regression test.
                    continue;
                }
                queue.push_back(next);
                seen.insert(next.id);

                // Find the failure state for next. Same as standard.
                let mut fail = it.nfa().state(item.id).fail;
                while it.nfa().state(fail).next_state(b) == fail_id() {
                    fail = it.nfa().state(fail).fail;
                }
                fail = it.nfa().state(fail).next_state(b);

                // This is the key difference from the standard formulation.
                // Namely, if we've seen a match, then we only want a failure
                // transition if the failure transition preserves the match
                // we've seen. In general, this is not true of all failure
                // transitions since they can point back to any suffix of what
                // we've seen so far. Instead, we only want to point back to
                // suffixes that contain any match we've seen.
                //
                // We achieve this by comparing the depth of the failure
                // transition with the number of states between this state
                // and the beginning of the earliest match detected. If the
                // depth of the failure state is smaller than this difference,
                // then it cannot contain the match. If it's bigger or equal
                // to the difference, then it necessarily includes the match
                // we've seen since all failure transitions correspond to a
                // suffix.
                //
                // If we've determined that we don't want the failure
                // transition, then we set this state's failure transition to
                // the dead state. In other words, when a search hits this
                // state, it will not continue and correctly stop. (N.B. A
                // dead state is different than a fail state. A dead state
                // MUST be preceded by a match and acts as a sentinel to search
                // routines to terminate.)
                //
                // Understanding this is tricky, and it took me several days
                // to think through this and get it right. If you want to grok
                // it, then I'd recommend: 1) switch the implementation to
                // always use the standard algorithm for filling in failure
                // transitions, 2) run the test suite and 3) examine the test
                // failures. Write out the automatons for them and try to work
                // backwards by figuring out which failure transitions should
                // be removed. You should arrive at the same rule used below.
                if let Some(match_depth) = next.match_at_depth {
                    let fail_depth = it.nfa().state(fail).depth;
                    let next_depth = it.nfa().state(next.id).depth;
                    if next_depth - match_depth + 1 > fail_depth {
                        it.nfa().state_mut(next.id).fail = dead_id();
                        continue;
                    }
                    assert_ne!(
                        start.id,
                        it.nfa().state(next.id).fail,
                        "states that are match states or follow match \
                         states should never have a failure transition \
                         back to the start state in leftmost searching",
                    );
                }
                it.nfa().state_mut(next.id).fail = fail;
                it.nfa().copy_matches(fail, next.id);
            }
            // If there are no transitions for this state and if it's a match
            // state, then we must set its failure transition to the dead
            // state since we never want it to restart the search.
            if !any_trans && it.nfa().state(item.id).is_match() {
                it.nfa().state_mut(item.id).fail = dead_id();
            }
            // We don't need to copy empty matches from the start state here
            // because that's only necessary for overlapping matches and
            // leftmost match kinds don't support overlapping matches.
        }
    }

    /// Returns a set that tracked queued states.
    ///
    /// This is only necessary when ASCII case insensitivity is enabled, since
    /// it is the only way to visit the same state twice. Otherwise, this
    /// returns an inert set that nevers adds anything and always reports
    /// `false` for every member test.
    fn queued_set(&self) -> QueuedSet<S> {
        if self.builder.ascii_case_insensitive {
            QueuedSet::active()
        } else {
            QueuedSet::inert()
        }
    }

    /// Set the failure transitions on the start state to loop back to the
    /// start state. This effectively permits the Aho-Corasick automaton to
    /// match at any position. This is also required for finding the next
    /// state to terminate, namely, finding the next state should never return
    /// a fail_id.
    ///
    /// This must be done after building the initial trie, since trie
    /// construction depends on transitions to `fail_id` to determine whether a
    /// state already exists or not.
    fn add_start_state_loop(&mut self) {
        let start_id = self.nfa.start_id;
        let start = self.nfa.start_mut();
        for b in AllBytesIter::new() {
            if start.next_state(b) == fail_id() {
                start.set_next_state(b, start_id);
            }
        }
    }

    /// Remove the start state loop by rewriting any transitions on the start
    /// state back to the start state with transitions to the dead state.
    ///
    /// The loop is only closed when two conditions are met: the start state
    /// is a match state and the match kind is leftmost-first or
    /// leftmost-longest. (Alternatively, if this is an anchored automaton,
    /// then the start state is always closed, regardless of aforementioned
    /// conditions.)
    ///
    /// The reason for this is that under leftmost semantics, a start state
    /// that is also a match implies that we should never restart the search
    /// process. We allow normal transitions out of the start state, but if
    /// none exist, we transition to the dead state, which signals that
    /// searching should stop.
    fn close_start_state_loop(&mut self) {
        if self.builder.anchored
            || (self.match_kind().is_leftmost() && self.nfa.start().is_match())
        {
            let start_id = self.nfa.start_id;
            let start = self.nfa.start_mut();
            for b in AllBytesIter::new() {
                if start.next_state(b) == start_id {
                    start.set_next_state(b, dead_id());
                }
            }
        }
    }

    /// Sets all transitions on the dead state to point back to the dead state.
    /// Normally, missing transitions map back to the failure state, but the
    /// point of the dead state is to act as a sink that can never be escaped.
    fn add_dead_state_loop(&mut self) {
        let dead = self.nfa.state_mut(dead_id());
        for b in AllBytesIter::new() {
            dead.set_next_state(b, dead_id());
        }
    }

    /// Computes the total amount of heap used by this NFA in bytes.
    fn calculate_size(&mut self) {
        let mut size = 0;
        for state in &self.nfa.states {
            size += state.heap_bytes();
        }
        self.nfa.heap_bytes = size;
    }

    /// Add a new state to the underlying NFA with the given depth. The depth
    /// is used to determine how to represent the transitions.
    ///
    /// If adding the new state would overflow the chosen state ID
    /// representation, then this returns an error.
    fn add_state(&mut self, depth: usize) -> Result<S> {
        if depth < self.builder.dense_depth {
            self.nfa.add_dense_state(depth)
        } else {
            self.nfa.add_sparse_state(depth)
        }
    }

    /// Returns the match kind configured on the underlying builder.
    fn match_kind(&self) -> MatchKind {
        self.builder.match_kind
    }
}

/// A set of state identifiers used to avoid revisiting the same state multiple
/// times when filling in failure transitions.
///
/// This set has an "inert" and an "active" mode. When inert, the set never
/// stores anything and always returns `false` for every member test. This is
/// useful to avoid the performance and memory overhead of maintaining this
/// set when it is not needed.
#[derive(Debug)]
struct QueuedSet<S> {
    set: Option<BTreeSet<S>>,
}

impl<S: StateID> QueuedSet<S> {
    /// Return an inert set that returns `false` for every state ID membership
    /// test.
    fn inert() -> QueuedSet<S> {
        QueuedSet { set: None }
    }

    /// Return an active set that tracks state ID membership.
    fn active() -> QueuedSet<S> {
        QueuedSet { set: Some(BTreeSet::new()) }
    }

    /// Inserts the given state ID into this set. (If the set is inert, then
    /// this is a no-op.)
    fn insert(&mut self, state_id: S) {
        if let Some(ref mut set) = self.set {
            set.insert(state_id);
        }
    }

    /// Returns true if and only if the given state ID is in this set. If the
    /// set is inert, this always returns false.
    fn contains(&self, state_id: S) -> bool {
        match self.set {
            None => false,
            Some(ref set) => set.contains(&state_id),
        }
    }
}

/// An iterator over every byte value.
///
/// We use this instead of (0..256).map(|b| b as u8) because this optimizes
/// better in debug builds.
///
/// We also use this instead of 0..=255 because we're targeting Rust 1.24 and
/// inclusive range syntax was stabilized in Rust 1.26. We can get rid of this
/// once our MSRV is Rust 1.26 or newer.
#[derive(Debug)]
struct AllBytesIter(u16);

impl AllBytesIter {
    fn new() -> AllBytesIter {
        AllBytesIter(0)
    }
}

impl Iterator for AllBytesIter {
    type Item = u8;

    fn next(&mut self) -> Option<Self::Item> {
        if self.0 >= 256 {
            None
        } else {
            let b = self.0 as u8;
            self.0 += 1;
            Some(b)
        }
    }
}

impl<S: StateID> fmt::Debug for NFA<S> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "NFA(")?;
        writeln!(f, "match_kind: {:?}", self.match_kind)?;
        writeln!(f, "prefilter: {:?}", self.prefilter)?;
        writeln!(f, "{}", "-".repeat(79))?;
        for (id, s) in self.states.iter().enumerate() {
            let mut trans = vec![];
            s.trans.iter(|byte, next| {
                // The start state has a bunch of uninteresting transitions
                // back into itself. It's questionable to hide them since they
                // are critical to understanding the automaton, but they are
                // very noisy without better formatting for contiugous ranges
                // to the same state.
                if id == self.start_id.to_usize() && next == self.start_id {
                    return;
                }
                // Similarly, the dead state has a bunch of uninteresting
                // transitions too.
                if id == dead_id() {
                    return;
                }
                trans.push(format!("{} => {}", escape(byte), next.to_usize()));
            });
            writeln!(f, "{:04}: {}", id, trans.join(", "))?;

            let matches: Vec<String> = s
                .matches
                .iter()
                .map(|&(pattern_id, _)| pattern_id.to_string())
                .collect();
            writeln!(f, "  matches: {}", matches.join(", "))?;
            writeln!(f, "     fail: {}", s.fail.to_usize())?;
            writeln!(f, "    depth: {}", s.depth)?;
        }
        writeln!(f, "{}", "-".repeat(79))?;
        writeln!(f, ")")?;
        Ok(())
    }
}

/// Iterate over all possible byte transitions given a sparse set.
fn sparse_iter<S: StateID, F: FnMut(u8, S)>(trans: &[(u8, S)], mut f: F) {
    let mut byte = 0u16;
    for &(b, id) in trans {
        while byte < (b as u16) {
            f(byte as u8, fail_id());
            byte += 1;
        }
        f(b, id);
        byte += 1;
    }
    for b in byte..256 {
        f(b as u8, fail_id());
    }
}

/// Safely return two mutable borrows to two different locations in the given
/// slice.
///
/// This panics if i == j.
fn get_two_mut<T>(xs: &mut [T], i: usize, j: usize) -> (&mut T, &mut T) {
    assert!(i != j, "{} must not be equal to {}", i, j);
    if i < j {
        let (before, after) = xs.split_at_mut(j);
        (&mut before[i], &mut after[0])
    } else {
        let (before, after) = xs.split_at_mut(i);
        (&mut after[0], &mut before[j])
    }
}

/// Return the given byte as its escaped string form.
fn escape(b: u8) -> String {
    use std::ascii;

    String::from_utf8(ascii::escape_default(b).collect::<Vec<_>>()).unwrap()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn scratch() {
        let nfa: NFA<usize> = Builder::new()
            .dense_depth(0)
            // .match_kind(MatchKind::LeftmostShortest)
            // .match_kind(MatchKind::LeftmostLongest)
            .match_kind(MatchKind::LeftmostFirst)
            // .build(&["abcd", "ce", "b"])
            // .build(&["ab", "bc"])
            // .build(&["b", "bcd", "ce"])
            // .build(&["abc", "bx"])
            // .build(&["abc", "bd", "ab"])
            // .build(&["abcdefghi", "hz", "abcdefgh"])
            // .build(&["abcd", "bce", "b"])
            .build(&["abcdefg", "bcde", "bcdef"])
            .unwrap();
        println!("{:?}", nfa);
    }
}