1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Poisson distribution.
#![allow(deprecated)]
use crate::distributions::utils::log_gamma;
use crate::distributions::{Cauchy, Distribution};
use crate::Rng;
/// The Poisson distribution `Poisson(lambda)`.
///
/// This distribution has a density function:
/// `f(k) = lambda^k * exp(-lambda) / k!` for `k >= 0`.
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Poisson {
lambda: f64,
// precalculated values
exp_lambda: f64,
log_lambda: f64,
sqrt_2lambda: f64,
magic_val: f64,
}
impl Poisson {
/// Construct a new `Poisson` with the given shape parameter
/// `lambda`. Panics if `lambda <= 0`.
pub fn new(lambda: f64) -> Poisson {
assert!(lambda > 0.0, "Poisson::new called with lambda <= 0");
let log_lambda = lambda.ln();
Poisson {
lambda,
exp_lambda: (-lambda).exp(),
log_lambda,
sqrt_2lambda: (2.0 * lambda).sqrt(),
magic_val: lambda * log_lambda - log_gamma(1.0 + lambda),
}
}
}
impl Distribution<u64> for Poisson {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
// using the algorithm from Numerical Recipes in C
// for low expected values use the Knuth method
if self.lambda < 12.0 {
let mut result = 0;
let mut p = 1.0;
while p > self.exp_lambda {
p *= rng.gen::<f64>();
result += 1;
}
result - 1
}
// high expected values - rejection method
else {
let mut int_result: u64;
// we use the Cauchy distribution as the comparison distribution
// f(x) ~ 1/(1+x^2)
let cauchy = Cauchy::new(0.0, 1.0);
loop {
let mut result;
let mut comp_dev;
loop {
// draw from the Cauchy distribution
comp_dev = rng.sample(cauchy);
// shift the peak of the comparison ditribution
result = self.sqrt_2lambda * comp_dev + self.lambda;
// repeat the drawing until we are in the range of possible values
if result >= 0.0 {
break;
}
}
// now the result is a random variable greater than 0 with Cauchy distribution
// the result should be an integer value
result = result.floor();
int_result = result as u64;
// this is the ratio of the Poisson distribution to the comparison distribution
// the magic value scales the distribution function to a range of approximately 0-1
// since it is not exact, we multiply the ratio by 0.9 to avoid ratios greater than 1
// this doesn't change the resulting distribution, only increases the rate of failed drawings
let check = 0.9
* (1.0 + comp_dev * comp_dev)
* (result * self.log_lambda - log_gamma(1.0 + result) - self.magic_val).exp();
// check with uniform random value - if below the threshold, we are within the target distribution
if rng.gen::<f64>() <= check {
break;
}
}
int_result
}
}
}
#[cfg(test)]
mod test {
use super::Poisson;
use crate::distributions::Distribution;
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_poisson_10() {
let poisson = Poisson::new(10.0);
let mut rng = crate::test::rng(123);
let mut sum = 0;
for _ in 0..1000 {
sum += poisson.sample(&mut rng);
}
let avg = (sum as f64) / 1000.0;
println!("Poisson average: {}", avg);
assert!((avg - 10.0).abs() < 0.5); // not 100% certain, but probable enough
}
#[test]
fn test_poisson_15() {
// Take the 'high expected values' path
let poisson = Poisson::new(15.0);
let mut rng = crate::test::rng(123);
let mut sum = 0;
for _ in 0..1000 {
sum += poisson.sample(&mut rng);
}
let avg = (sum as f64) / 1000.0;
println!("Poisson average: {}", avg);
assert!((avg - 15.0).abs() < 0.5); // not 100% certain, but probable enough
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_zero() {
Poisson::new(0.0);
}
#[test]
#[should_panic]
fn test_poisson_invalid_lambda_neg() {
Poisson::new(-10.0);
}
}